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Context

Source location and surveillance missions

◮ Forest fire source location

◮ Chemical or gas leaks

◮ Surveillance of large areas or search and rescue

Interest for multi-vehicle systems (MVS)

◮ Mission repartition

◮ Robustness to faults or agent loss
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Field maximization with a MVS

Goal

→ Find the global maximum of an initially unknown spatial field

Means

→ Multi-vehicle system (MVS)
→ Each vehicle measures the field value at its position

Constraints

→ Accurately locate field maximum
→ Take into account vehicle dynamics
→ Avoid collisions between vehicles
→ Limit the number of measurements
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Outline
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Assumptions

Consider some unknown, continuous, and time-invariant scalar field

φ : x ∈D ⊂ R
2→ φ(x) ∈ R

to be maximized using N identical mobile agents with dynamics

M ẍi +C (xi , ẋi) ẋi = ui ,

and measurement equation at xi

y (xi) = φ (xi)+wi(ηi),

wi measurement noise and ηi the i-th sensor state

◮ ηi = 0 nominal sensor

◮ ηi = 1 faulty sensor (bias or modified variance)
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Problem statement

◮ N identical vehicles with lossless synchronized communication

◮ Communication radius R defines agent i neighbourhood

Ni(t) = {j | ‖xi(t)−xj(t)‖6 R} .

◮ Available information at time tk for agent i

Si(tk) =
k⋃

ℓ=0

{[yj(tℓ),xj(tℓ)] | j ∈Ni(tℓ)∩M (tℓ)} .

◮ Define a strategy to find efficiently (time, measurements)

xM = argmax
x∈D

{φ(x)}
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Topics addressed
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Proposed solutions

1 Define iteratively vehicle
sampling positions

2 Model computation from
measurements

3Move vehicles with collision
avoidance
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Proposed solutions

Local approach

1 Define iteratively vehicle
sampling positions

Optimal sensor placement

2 Model computation from
measurements

Local linear model

3Move vehicles with collision
avoidance

Formation control
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Proposed solutions

Global approach

1 Define iteratively vehicle
sampling positions

Constrained sampling criterion

2 Model computation from
measurements

3Move vehicles with collision
avoidance
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Proposed solutions

Global approach

1 Define iteratively vehicle
sampling positions

Constrained sampling criterion

2 Model computation from
measurements

Kriging model of the field

3Move vehicles with collision
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Proposed solutions

Global approach

1 Define iteratively vehicle
sampling positions

Constrained sampling criterion

2 Model computation from
measurements

Kriging model of the field

3Move vehicles with collision
avoidance

Spread the vehicles in the area
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Section 2

Local approach
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Local approach

"Gradient climbing" algorithm (Ögren 2004, Cortes 2009)

1. Vehicles are kept in a close formation

2. Vehicles measure the field value at their positions and broadcast

3. Cooperative gradient estimation from measurements

4. Computation of formation motion along gradient direction

Contributions

◮ Cooperative weighted least-square estimation with local model

◮ Outlier detection: adaptive threshold related to cooperative
estimation model

◮ Optimal sensor placement with faulty sensors (Fisher
information matrix)

◮ Fleet control: vehicle formation motion and reconfiguration
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Field modeling

Locally, spatial field φ can be written

φi (x)= φ
(

x̂k
i

)
+
(

x− x̂k
i

)T
∇φ

(
x̂k

i

)
+
1

2

(
x− x̂k

i

)T
∇2φ(χ i)

(
x− x̂k

i

)
.

Parameter vector αk
i =

(
φ
(
x̂k

i

)

∇φ
(
x̂k

i

)
)
to be estimated

Local linear model

φ i (x) = φ
(

x̂k
i

)
+

(
x− x̂k

i

)T
∇φ

(
x̂k

i

)
,

with modeling error ei (x) = φi (x)−φ i (x)
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Weighted least-squares

Measurement of vehicle j

yj (tk) =
(
1

(
xj (tk)− x̂k

i

)T )
αk

i + ei (xj (tk))+nj (tk) .

Vehicle i collects all measurements from Ni(tk)

yi ,k = Ri ,kαk
i +ni ,k +ei ,k

Weight matrix Wi ,k =

diag
(

σ−2
η1(tk)

exp
(
−||x1(tk)−x̂k

i ||22
kw

)
, . . . , σ−2

ηN(tk)
exp

(
−||xN(tk)−x̂k

i ||22
kw

))

α̂
k
i =

(
R
T
i ,kWi ,kRi ,k

)−1
R
T
i ,kWi ,kyi ,k
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Model-based fault detection scheme

System

Environment
act on

measureSensors

Actuators
Control

Mission

Communication

Faults

Faults

Fault detection and isolation

Measure, model,

estimation ...

System values
Decision

Residual

construction

Faults

Problem characteristics

◮ Local model shared by vehicles

◮ Spatially-varying modeling error
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Fault detection

Faulty sensor of vehicle i : yi = φ(xi)+wi(ηi)+d

Detection residual ri = φ̂i(xi)− yi

Adaptive threshold for residual analysis

|ri |< kFDI

√
σ2
0

(
1+hih

T
i −2hi [i ]

)
+hT

i Uihi

Takes into account measurement noise, sensor locations and
modeling error
For fault isolation:

◮ For each vehicle, bank of N residuals rij excluding the j-th
measurement

◮ Consensus between vehicles to identify the faulty sensors
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Fault detection results
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N = 15 Faulse detection rate
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Optimal sensor placement

Find sensor locations (and associated formation shapes) that

◮ minimise estimate variance and modeling error influence

◮ take into account different sensor variances (faults)

Minimise a function of estimation error covariance matrix

Σ̂αk+1
i

=
(

R
T
i ,k+1Wi ,k+1Ri ,k+1

)−1

under collision avoidance constraint ‖xi −xj‖22 > R2
safety, ∀{i , j}, j > i

Several optimal design criteria (Walter & Pronzato 1987)
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Optimal sensor placement

T-optimal solution

(x1 (tk+1) . . .xN (tk+1)) = arg max
(x1,...,xN)

tr
(

R
T
i ,k+1Wi ,k+1Ri ,k+1

)

s.t. ‖xi −xj‖22 > R2
safety, ∀{i , j}, j > i .
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Optimal sensor placement

T-optimal solution

(x1 (tk+1) . . .xN (tk+1)) = arg max
(x1,...,xN)

tr
(

R
T
i ,k+1Wi ,k+1Ri ,k+1

)

s.t. ‖xi −xj‖22 > R2
safety, ∀{i , j}, j > i .

LagrangianL = tr
(

R
T
i ,k+1Wi ,k+1Ri ,k+1

)
+∑

j>i

µij

(
‖xi −xj‖22−R2

safety

)

Two solutions for µij = 0 (inactive constraints),

xi(tk+1) = x̂
k+1
i

∥∥∥xi (tk+1)− x̂k+1
i

∥∥∥
2

2
= kw−1
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Optimal sensor placement

D-optimal solution

(x1 (tk+1) . . .xN (tk+1)) = arg max
(x1,...,xN)

det
(

R
T
i ,k+1Wi ,k+1Ri ,k+1

)

s.t. ‖xi −xj‖22 > R2
safety, ∀{i , j}, j > i .
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Optimal sensor placement

D-optimal solution

(x1 (tk+1) . . .xN (tk+1)) = arg max
(x1,...,xN)

det
(

R
T
i ,k+1Wi ,k+1Ri ,k+1

)

s.t. ‖xi −xj‖22 > R2
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LagrangianL = det
(

R
T
i ,k+1Wi ,k+1Ri ,k+1

)
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j>i

µij
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safety

)
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k+1
i
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2

2
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2kw
3
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Numerical solutions

N = 3 agents, no faulty agent

T-optimal D-optimal
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Numerical solutions

N = 5 agents, D-optimal placement

No fault 1 faulty agent
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Numerical solutions

Conclusion on T-optimal and D-optimal sensor placement

◮ All vehicles should be located on a circle with inactive constraints

◮ A faulty agent is placed further from the fleet, due to estimation

weight

Sensor placement to minimize modeling error

◮ Be as close as possible to estimation position

Formation characteristics

◮ T-optimal → concentric circles

◮ D-optimal → compact formation around estimation position
with active constraints

A. Kahn, J. Marzat, H. Piet-Lahanier, M. Kieffer, Cooperative estimation with outlier detection and fleet

reconfiguration for multi-agent systems, IFAC Workshop on Multi-Vehicule Systems 2015
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Cooperative guidance law

◮ Manage vehicle motions to respect sensor placement

◮ Locate field maximum

A virtual point x̂
k is used in a two-layer control law

◮ High-level control
◮ Move the virtual point to track the field maximum

◮ Low-level control
◮ Keep the agents in formation around the virtual point
◮ Avoid collisions between vehicles
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High-level control

Gradient climbing of estimation position x̂
k

x̂k+1 = x̂k +λ k∇̂φ
(

x̂k
) / ∥∥∥∇̂φ

(
x̂k

)∥∥∥
2
.

x̂
k can be proven to converge to maximum for concave fields

Decentralized computation of estimation position is possible with
incomplete communication graph

J. Marzat, A. Kahn, H. Piet-Lahanier Cooperative guidance of Lego Mindstorms

NXT mobile robots, 11th International Conference on Informatics in Control, Automation

and Robotics, Vienne Autriche, 2014
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Experiment

h
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Low-level control

Vehicle dynamics

M ẍi(t)+C (xi(t), ẋi(t)) ẋi(t) = ui(t)

Proposed control law (similar to Cheah, 2009)

ui(t) =M ¨̂xi(t)+C(xi(t), ẋi(t))ẋi(t)−k1
(

ẋi(t)− ˙̂xi(t)
)

+2k2
N

∑
j=1

(xi(t)−xj(t))exp

(
−(xi(t)−xj(t))T (xi(t)−xj(t))

q

)

−k i
3 (ηi , t)(xi(t)− x̂i(t)) ,
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Control stability

Candidate Lyapunov function V (X(t))

V (X(t)) =
1

2

N

∑
i=1

[
(ẋi(t)− ˙̂x(t))T M(ẋi(t)− ˙̂x(t))

+(xi(t)− x̂(t))T k i
3(xi(t)− x̂(t))

+ k2
N

∑
j=1

exp

(
−(xi(t)−xj(t))T (xi(t)−xj(t)

q

)]
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Control stability

Candidate Lyapunov function V (X(t))

V (X(t)) =
1

2

N

∑
i=1

[
(ẋi(t)− ˙̂x(t))T M(ẋi(t)− ˙̂x(t))

+(xi(t)− x̂(t))T k i
3(xi(t)− x̂(t))

+ k2
N

∑
j=1

exp

(
−(xi(t)−xj(t))T (xi(t)−xj(t)

q

)]

Speed control term
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Control stability

Candidate Lyapunov function V (X(t))

V (X(t)) =
1

2

N

∑
i=1

[
(ẋi(t)− ˙̂x(t))T M(ẋi(t)− ˙̂x(t))

+(xi(t)− x̂(t))T k i
3(xi(t)− x̂(t))

+ k2
N

∑
j=1

exp

(
−(xi(t)−xj(t))T (xi(t)−xj(t)

q

)]

Position control term
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Control stability

Candidate Lyapunov function V (X(t))

V (X(t)) =
1

2

N

∑
i=1

[
(ẋi(t)− ˙̂x(t))T M(ẋi(t)− ˙̂x(t))

+(xi(t)− x̂(t))T k i
3(xi(t)− x̂(t))

+ k2
N

∑
j=1

exp

(
−(xi(t)−xj(t))T (xi(t)−xj(t)

q

)]

Collision avoidance term
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Control stability

Candidate Lyapunov function V (X(t))

V (X(t)) =
1

2

N

∑
i=1

[
(ẋi(t)− ˙̂x(t))T M(ẋi(t)− ˙̂x(t))

+(xi(t)− x̂(t))T k i
3(xi(t)− x̂(t))

+ k2
N

∑
j=1

exp

(
−(xi(t)−xj(t))T (xi(t)−xj(t)

q

)]

Control law can be proven to be Lyapunov stable

A. Kahn, J. Marzat, H. Piet-Lahanier, M. Kieffer, Cooperative estimation with outlier detection and fleet

reconfiguration for multi-agent systems, IFAC Workshop on Multi-Vehicule Systems, Gênes Italie, 2015
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Reconfiguration

Optimal sensor placement → desired for-
mation shape
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Faulty agent i → modified control law

k i
3 (ηi = 0)> k i

3 (ηi = 1)

Faulty agents are "pushed" far from the formation center
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Reconfiguration
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Local approach: complete loop simulation

24/34 Reconfigurable cooperative control for extremum seeking



Problem statement Local approach Global Approach Conclusions and perspectives

Local approach: complete loop simulation

24/34 Reconfigurable cooperative control for extremum seeking



Problem statement Local approach Global Approach Conclusions and perspectives

Section 3

Global Approach
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Kriging

Unknown field φ(x) modeled as

Y (x) = r(x)T β +Z (x)

◮ r(x) regression vector

◮ β parameter vector

◮ Z (x) zero-mean Gaussian process with covariance
C(Z (x1),Z (x2))

Kriging provides a Gaussian distribution for each x with

◮ a mean value µ(x)

◮ a prediction variance σ2(x)

How to choose sampling points ?

26/34 Reconfigurable cooperative control for extremum seeking
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Kriging
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Kriging-based existing sampling criteria

Kriging-based sampling criterion for seeking xM = argmax
x∈D

φ(x)

� For optimizing costly-to-evaluate functions

� Based on n measurements, choose the n+1-th

◮ Kushner, 1962

◮ Expected improvement
(Jones, 1998)

◮ Confidence bound (Cox,
1997)

CKushner(x) = P(µ(x)> fmax+ ε)
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Kriging-based existing sampling criteria

Kriging-based sampling criterion for seeking xM = argmax
x∈D

φ(x)

� For optimizing costly-to-evaluate functions

� Based on n measurements, choose the n+1-th

◮ Kushner, 1962

◮ Expected improvement

(Jones, 1998)

◮ Confidence bound (Cox,
1997)

CEI(x)= (µ(x)−fmax)Ψ(z)+σ̂(x)ψ(z)

z =
µ(x)− fmax

σ̂(x)
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Kriging-based existing sampling criteria

Kriging-based sampling criterion for seeking xM = argmax
x∈D

φ(x)

� For optimizing costly-to-evaluate functions

� Based on n measurements, choose the n+1-th

◮ Kushner, 1962

◮ Expected improvement
(Jones, 1998)

◮ Confidence bound (Cox,
1997)

Clcb(x) = µ(x)+blcbσ̂(x)
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Existing Kriging-based sampling criteria for MVS

Now looking for all vehicle positions X

◮ Choi, 2008

◮ Xu & Choi, 2011 CChoi(X(t))=
∑
4
p=1λp(t)Ξp(X(t), t)

∑
4
p=1λp(t)

Ξ1 = µ, Ξ2 =−µ, Ξ3 = σ2, Ξ4 = ln(2πσ2)
Minimise uncertainy mean on J , grid of interest points.

◮ More exploration criteria than global optimization criteria

◮ Do not take into account vehicle dynamics explicitely
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Existing Kriging-based sampling criteria for MVS

Now looking for all vehicle positions X

◮ Choi, 2008

◮ Xu & Choi, 2011
CXu(X(t)) =

1

|J | ∑
j∈J

σ2
zj
(X(t))

Ξ1 = µ, Ξ2 =−µ, Ξ3 = σ2, Ξ4 = ln(2πσ2)
Minimise uncertainy mean on J , grid of interest points.

◮ More exploration criteria than global optimization criteria

◮ Do not take into account vehicle dynamics explicitely
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Existing Kriging-based sampling criteria for MVS

Now looking for all vehicle positions X

◮ Choi, 2008

◮ Xu & Choi, 2011

Ξ1 = µ, Ξ2 =−µ, Ξ3 = σ2, Ξ4 = ln(2πσ2)
Minimise uncertainy mean on J , grid of interest points.

◮ More exploration criteria than global optimization criteria

◮ Do not take into account vehicle dynamics explicitely
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Proposed criterion

Goals

◮ Locate global maximum

◮ Limit exploration to areas of interest

◮ Take into account vehicle dynamics

J (k)
i (x) = ‖xi(tk)−x‖2− ∑

j∈Ni (tk)

α‖xj(tk)−x‖2,

xd
i (tk) = argmin

x∈D

{
J (k)

i (x)
}

s.t. φ̂i ,k(x)+bσφ ,i ,k(x)> f i
max(tk)
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Criterion illustration

Instant 1
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Criterion illustration
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Criterion illustration
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Global approach : full simulation

A. Kahn, J. Marzat, H. Piet-Lahanier, M. Kieffer, Global extremum seeking by Kriging with a multi-agent

system, 17th IFAC SYSID, Beijing China, 2015
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Comparison with reference method
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Contribution

◮ Quick convergence to a
small error with limited
measurements

Limitations

◮ True covariance parameters
usually unknown
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Conclusions and perspectives

Two approaches for maximum location with a multi-vehicle system

Local approach

◮ Cooperative estimation with associated optimal placement

◮ Fault detection and identification

◮ Formation control with reconfiguration

Global approach

◮ Kriging-based criterion for global optimization to limit search
area

◮ Perspectives
◮ Fault diagnosis and reconfiguration with Kriging model
◮ Incorporate communication constraints in criterion
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